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Abstract

Objectives: In his 2014 Sutherland address to the American Society of Criminology, David Weisburd
demonstrated that the share of crime that is accounted for by the most crime-ridden street segments
is notably high and strikingly similar across cities, an empirical regularity referred to as the “law
of crime concentration.” In the large literature that has since proliferated, there remains considerable
debate as to how crime concentration should be measured empirically. We suggest a measure of
crime concentration that is simple, accurate and easily interpreted.

Methods: Using data from three of the largest cities in the United States, we compare observed
crime concentration to a counterfactual distribution of crimes generated by randomizing crimes to
street segments. We show that this method avoids a key pitfall that causes a popular method of
measuring crime concentration to considerably overstate the degree of crime concentration in a city.

Results: While crime is significantly concentrated in a statistical sense and while some crimes are
substantively concentrated among hot spots, the precise relationship is considerably weaker than
has been documented in the empirical literature.

Conclusions: The method we propose is simple and easily interpretable and compliments recent
advances which use the Gini coefficient to measure crime concentration.

Keywords: Criminology of place, hot spots, microgeography, Law of crime concentration

∗We thank John MacDonald for helpful comments on a previous version of this manuscript. Of course, all remaining
errors are our own. Corresponding author: Aaron Chalfin, Department of Criminology, 558 McNeil Building, University
of Pennsylvania, E-Mail: achalfin [at] sas.upenn.edu.



1 Introduction

A large and growing literature in criminology documents the importance of place — in particular,

microgeographic places like street segments — one of the two faces of a standard city block — in explaining

crime. Across a large number of places and in a variety of contexts, crime is found to be highly concentrated

(Sherman et al., 1989; Eck et al., 2007; Weisburd, 2015; Andresen et al., 2017; Haberman et al., 2017) and

persistent over time (Weisburd et al., 2009; Gorr and Lee, 2015). Taken as a whole, the substantial geographic

concentration of crime suggests that the social and physical features of the urban landscape might potentially

play an important role in the crime production function and therefore that crime hot spots are an appropriate

target over which a social planner can focus resources and ultimately intervene.1 However, the efficiency with

which resources can be targeted to crime hot spots depends critically on the extent to which crime is, in fact,

concentrated. Consequently, an over-emphasis on place may crowd out other promising approaches to crime

control (e.g., social service-based strategies) if the evidence on spatial crime concentration is misleading.

In his 2014 Edmund H. Sutherland address to the American Society of Criminology, David Weisburd

summarized the research on the importance of place and noted that places have been studied far less

by criminologists than other natural units of analysis (Weisburd, 2015). Weisburd further notes the extent

to which crime is concentrated among the most crime-ridden street segments is remarkably consistent

across cities and proposes that this empirical regularity is sufficiently strong to be characterized as a “law

of crime concentration.”2 Across eight cities of varying sizes, the top one percent of street segments, ranked

by crime incidence, accounted for approximately 25 percent of crimes in that city and the top 5 percent

of street segments accounted for half of the crimes. The stability of these estimates is noteworthy and

forms the basis for the claim that this pattern can be characterized as a law.

Despite the abundance of research inspired by the law of crime concentration, recent scholarship has

raised a number of key measurement issues in how crime concentration should actually be measured

1Indeed, the empirical regularity that crime is highly spatially concentrated has been central to the study of criminal
justice policy and has promulgated a number of important research literatures that have become a mainstay of empirical
criminology including a large literature on hot spots policing (Weisburd and Green, 1995; Sherman and Weisburd, 1995;
Braga, 2001; Braga and Bond, 2008; Weisburd and Telep, 2014; Braga et al., 2014) and the equally important literature
on the importance of environmental design including research on restoring vacant lots (Branas et al., 2011; Garvin et al.,
2013; Bogar and Beyer, 2016; Kondo et al., 2016; Branas et al., 2018; South et al., 2018; Moyer et al., 2019), reducing
physical disorder (Kelling et al., 1982; Keizer et al., 2008; Skogan, 2012; Braga et al., 2015) and improving ambient lighting
(Farrington and Welsh, 2002; Welsh and Farrington, 2008; Doleac and Sanders, 2015; Chalfin et al., 2019, 2020).

2In Weisburd’s own words, “for a defined measure of crime at a specific microgeographic unit, the concentration of
crime will fall within a narrow bandwidth of percentages.”
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(Bernasco and Steenbeek, 2017; Hipp and Kim, 2017; Levin et al., 2017; Prieto Curiel, 2019; OBrien,

2019; Mohler et al., 2019). In particular, prior research notes that the fact that a small share of street

segments accounts for a large share of the crime over a given time period does not necessarily mean

that crime is substantively concentrated. To see this, consider that even in the cities with most the

challenging crime problems, the number of street segments can far exceed the number of crimes known

to law enforcement over any reasonable time window. For instance, consider a city like New York in which

there are approximately 120,000 street segments and 300 homicides annually. In this case, it is trivial

to see that, even if each homicide occurs on a different street segment (thus, by definition, there would

be no concentration of crime), 0.25 percent of the street segments would account for 100 percent of the

homicides.3 Thus, using the standard metric of crime concentration, the extent to which at least some

types of crimes are concentrated will be biased upward. Similarly, the standard metric does not allow

for a comparative analysis of concentration among different types of crimes since rarer crimes will, for

mechanical reasons, appear to be more concentrated than more common crimes (Hipp and Kim, 2017).

Recent scholarship has proposed several modifications to the measurement of crime concentration that

address these concerns (Bernasco and Steenbeek, 2017; Hipp and Kim, 2017; Levin et al., 2017; Curiel

et al., 2018; Mohler et al., 2019; OBrien, 2019). A particularly common approach that is advanced by

Levin et al. (2017) and which can be found in abundance in the recent literature (see e.g., Steenbeek

and Weisburd (2016), Andresen et al. (2017), Schnell et al. (2017) and Umar et al. (2020)) is to measure

crime concentration only among street segments that experienced at least one crime. The idea behind this

approach is that crimes can only be concentrated where they, in fact, occur. This modification to the

measurement of crime concentration does tend to reduce the degree of the bias in the standard measure

but, as we show, in most empirical applications, removing crime-free street segments will continue to lead

to a substantial overestimate of the extent to which crimes are concentrated.

In this article, we propose a different way to measure crime concentration that is simple, easily interpreted

and which fully addresses the concerns outlined above. In particular, we compare actual concentration

— for instance, the share of street segments accounting for 25 percent or 50 percent of the crimes — to

a counterfactual level of crime concentration that is constructed by randomly assigning crimes to street

segments, with replacement. Using randomization we generate a spatial distribution of crime where crime is

3Even over a period of ten such years, if every homicide occurred on a different street segment, we would observe that
just 2.5 percent of the street segments account for 100 percent of the homicides.
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not concentrated by construction.4 Notably, our method compliments an alternative and highly convenient

method of measuring crime concentration using the Gini coefficient (Bowers, 2014; Davies and Johnson,

2015; Steenbeek and Weisburd, 2016; Bernasco and Steenbeek, 2017) while retaining one of the most

important and attractive properties — the interpretability — of Weisburd’s original metric.

Using our proposed metric and data from New York City, Chicago and Philadelphia, three of the

five largest cities in the United States, we show that while most types of crimes exhibit considerable

concentration, the degree to which crimes are actually concentrated is smaller than has been suggested

by prior analyses. For murder as well as common street crimes such as auto theft and robbery, we find

that the law of crime concentration holds to a far lesser degree than has been supposed in prior literature

which retains street segments that experienced at least one crime.

2 Prior Literature

2.1 Empirical Evidence on Crime Concentration

As noted by Weisburd (2015), the term “criminology of place” can be traced back to a 1989 article in

Criminology by Sherman et al. (1989) which was among the first endeavors to systematically measure the

concentration of crime among microgeographic areas.5 However, the recognition that a large share of crime

is clustered in a small share of places is an observation that is nearly as old as modern cities (Quetelet, 1831;

Weisburd et al., 2009). Over the last few decades, a literature has proliferated to establish that micro- rather

than macrogeography explains the lion’s share of spatial variation in urban crime, (Steenbeek and Weisburd,

2016; Schnell et al., 2017), that crime is highly concentrated among a small number of crime hot spots (Eck

et al., 2007; Weisburd, 2015) and that these hot spots, at least to an extent, persist over time (Weisburd et al.,

2004, 2009; Gorr and Lee, 2015). Research has found that this pattern is not limited to low-impact crimes and

applies equally, if not more forcefully, to some of the most costly criminal activity including gun crimes (Braga

et al., 2010) and common street crimes such as robbery (Braga et al., 2010, 2011; Haberman et al., 2017)67

Since Weisburd’s influential 2015 article, a rapidly growing literature, initiated by a 2017 special issue

4Randomizing crimes to blocks yields a result that is substantively similar to allocating crimes using a Poisson distribution.
5For a review of the historical development of the crime concentration literature, see Johnson (2010). For a review of

theoretical work in this area, see Farrell (2015).
6Similarly, Hibdon et al. (2017) show that the law of crime concentration is substantively replicated when an additional

data source — 911 calls for emergency service — are used to explore the concentration of illegal drug activity.
7These findings are subject to important criticisms regarding the measurement of crime concentration by Hipp and

Kim (2017), Levin et al. (2017), Bernasco and Steenbeek (2017) and Curiel et al. (2018) which we discuss in Section 2.2.
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on the criminology of place in the Journal of Quantitative Criminology, has developed to further test

and clarify the law of crime concentration and the extent to which it holds across time and place. Recent

scholarship documents robust evidence that the law of crime concentration substantively holds in other

U.S. cities including Chicago (Schnell et al., 2017), Seattle (Hibdon et al., 2017), St. Louis (Levin et al.,

2017) and a large number of cities in California (Hipp and Kim, 2017), in a number of non-U.S. cities

including Vancouver, Canada (Andresen et al., 2017) Milan, Italy (Favarin, 2018) and among various cities

in the United Kingdom (Oliveira et al., 2017) and Latin America (Ajzenman and Jaitman, 2016) as well

as in a suburban setting — Brooklyn Park, Minnesota (Gill et al., 2017). In every setting in which the

law of crime concentration has been tested, the law, as proposed, holds up substantively.

2.2 Conceptual Challenges to Measuring Crime Concentration

As noted by Andresen and Malleson (2011), Levin et al. (2017), Hipp and Kim (2017), Bernasco and

Steenbeek (2017) Curiel et al. (2018) and Mohler et al. (2019) among others, the chief challenge to using the

standard concentration metric is that it will lead to upward biased measures of crime concentration when

the number of places is large relative to the number of crimes. That is, when crimes are relatively rare, it will

be true by definition that a small number of places will account for most or even all of the crimes in a city.8

The literature has proposed two main ways of dealing with this issue. First, researchers have proposed shift-

ing to a different metric — the Lorenz curve or the closely related Gini coefficient — that is more explicitly

designed to measure the degree of inequality in a distribution (Bernasco and Steenbeek, 2017; OBrien, 2019;

Mohler et al., 2019). A principal advantage of the Gini coefficient is that it allows researchers to characterize

the relative degree of crime concentration using a single summary metric, without appealing to an arbitrary

cutoff in the distribution of crimes (e.g., 25 or 50 percent of crimes). While the Gini coefficient can also per-

form poorly when crimes are sparse, recent research (Bernasco and Steenbeek, 2017; OBrien, 2019; Mohler

et al., 2019) has proposed ways to address this concern, thus providing a means of measuring crime concentra-

tion that is potentially robust to the problem of crime-free street segments.9 One limitation, however, in using

8This issue is not merely academic since, in many cities, a large number of street segments do not experience crime
over a given time period (Curman et al., 2015) and, as it turns out, this issue has enormous implications for the conclusions
that are drawn about which crimes are concentrated and the extent to which they are. For instance, as noted in Hipp
and Kim (2017), while the standard crime concentration metric suggests that violent crimes are more concentrated than
property crimes, after correcting the problem identified above, there is clear evidence that the degrees of concentration
among violent and property crimes are, in fact, similar.

9Recent scholarship by Prieto Curiel (2019) raises questions about the stability of the Gini coefficient as well as the
“modified Gini coefficient,” noting that these are sensitive to changes in the underlying crime rate in a city.
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the Gini coefficient is that it tends to be difficult to interpret, especially in communicating the degree to which

criminal activity is concentrated to the wider world of criminal justice policymakers and researchers.10 The

Gini coefficient is, in our view, not very different from a correlation— it is an elegant and simple measure that

is invariant to unit or scale — but it is difficult to communicate the cardinal information contained therein.

Given the inherent challenges in interpreting Gini coefficients, we argue that there remains a great

deal of value in reporting crime concentration measures that correspond, as Weisburd proposed, to the

share of places that account for a given share, typically one quarter or one half of crimes. Indeed, this

remains a highly popular way to summarize crime concentration in the recent literature (Ajzenman and

Jaitman, 2016; Gill et al., 2017; Andresen et al., 2017; Hibdon et al., 2017; Levin et al., 2017), sometimes

alongside a Gini coefficient (Steenbeek and Weisburd, 2016; Schnell et al., 2017; Favarin, 2018; Vandeviver

and Steenbeek, 2019; Umar et al., 2020).

Recent scholarship has proposed a second means of addressing issues caused by sparse crime data — while

continuing to use Weisburd’s original and highly interpretable crime concentration metric. The most popular

solution in the literature which has been advanced in particular by Levin et al. (2017) is to measure the share

of crimes that occur among the top k percent of street segments, limiting the data to the street segments

that experienced at least one crime. The intuition behind such a correction is straightforward: since many

street segments do not experience any crime at all, these zero crime street segments will tend to make crime

appear more concentrated than it actually is at the top of the distribution. Accordingly, the proposal is to

focus on the segments in which crimes do occur. By addressing bias in measures of crime concentration that

is an artifact of crime-free places, this proposed metric purports to move us closer to correctly estimating the

extent to which crime is substantively concentrated. To see how this might work, consider a city in which

half of street segments do not receive crime. If 2 percent of all street segments account for one quarter of

the crimes, then it will be the case that 4 percent of street segments which experience non-zero crime counts

account for one quarter of the crimes. Thus, the standard concentration metric will be two times too small.

2.3 Substantive Issues with Removing Crime-Free Segments

There is some virtue to removing crime free street segments — the method is simple, easy to compute and

understand and it does, in some applications, help to address the statistical artifact caused by sparse crime

10The Gini coefficient is formally defined as the ratio of the area between the Lorenz curve and the line of perfect equality,
and the area above the line of perfect equality.
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data. However, this method assumes that street segments with zero crimes are structural zeros — that

is, all of these are streets that are ineligible to receive crimes. As we demonstrate, this method will yield

a metric of crime concentration that is biased upward – in many cases, considerably so. As we explain,

the principal issue with this approach is that street segments which experience zero crimes is not the only

reason why uniformity (k percent of segments account for k percent of crime) does not hold when crimes

are assigned, at random, to street segments.

The implication of removing zero crime street segments to correct the non-uniformity problem is that,

in the absence of any crime concentration, this measure of crime concentration should be 1. That is, the

top k percent of street segments that have non-zero crime should account for exactly k percent of the

crimes i.e., 25 percent of the street segments will account for 25 percent of the crimes, 50 percent of the

street segments will account for 50 percent of the crimes, etc. This standard — that of uniformity — is an

overly stringent standard that leads to an overestimate of the degree to which there is crime concentration.

To see this, consider a simple example involving a city in which there are 1,000 street segments and 100

crimes. Using the standard measure of crime concentration, we would compute that 100
1,000

= 10 percent

of street segments account for 100 percent of the crimes.

Using the metric advanced by Levin et al. (2017) and others, what would zero concentration look like?

Zero concentration would hold if each crime occurred on a different street segment, as would be required

under uniformity. However, a scheme in which crimes are randomized to street segments is unlikely —

in fact, very unlikely — to produce the result that all 100 crimes occurred on different street segments

(Curiel et al., 2018; Prieto Curiel, 2019). As a result, when this metric is applied to a dataset in which

there is zero crime concentration by construction, it will indicate a positive amount of crime concentration.

We show this using a simple simulation and later, in Section 5, we present evidence on the degree to which

this metric yields an overestimate of crime concentration in empirical data.

3 An Adjusted Measure of Crime Concentration

In this section, we use randomization to propose a simple and easily interpretable way to identify the

extent to which crimes are spatially concentrated.11 We begin with a simple example and lay out our

11Both Levin et al. (2017) and Hipp and Kim (2017) utilize simulation to elucidate the importance of a counterfactual in
interpreting crime concentration statistics. However, neither paper utilizes randomization to generate a measure of marginal
crime concentration. Recent work by Prieto Curiel (2019) shows, using simulated data, that probabilistic models — for instance
the “rare event concentration coefficient” (RECC) — outperform the Gini coefficient in measuring crime concentration.
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proposed framework. Consider a city that has n street segments and experiences j crimes. In the absence of

concentration, what share of street segments should account for one quarter or one half of crimes? The rule

advanced by (Levin et al., 2017) suggests that we ought to expect uniformity — that is, k percent of street

segments account for k percent of crimes. We consider the conditions under which this will be the case

by running a simple simulation exercise. Consider a fictional city which has 1,000 street segments and a

thought experiment in which the following number of crimes are assigned, at random with replacement, to

these 1,000 street segments: 50, 100, 500, 1,000, 5,000, 10,000, 50,000, 100,000 and 1,000,000. What share of

crimes would we expect to see represented among the top 25 percent of street segments, ranked according

to the number of crimes experienced? Of course, under uniformity, we would expect that 25 percent and

50 percent of street segments to account for 25 percent and 50 percent of the crimes, respectively.

We present the results of the simulation exercise in Figure 1. In Figure 1, Panel A plots the share of all

street segments and corresponds to the un-adjusted measure of crime concentration as was originally proposed

byWeisburd (2015). Panel B plots the share of crime concentration among street segments that actually expe-

rience crime, as suggested by Levin et al. (2017) and others. In each panel, we plot the share of street segments

accounting for 25 percent of the crimes using the dashed gray line and the share of street segments accounting

for 50 percent of the crimes using the dashed black line. Horizontal reference lines are drawn at both 25 and

50 percent along the y-axis and represent the levels of crime concentration at which uniformity is achieved.

In Panel A, we see that when crime density is low relative to the number of street segments (e.g. j = 50

crimes amongst 1,000 segments), a very small share, approximately 1.2 percent of street segments, ranked by

crime density, account for one quarter of the crimes. Likewise, just 2.4 percent of the street segments account

for half of the crimes. As crimes become more common, each measure of crime concentration increases.

When the number of crimes is 1,000 equaling the number of street segments, we see that 7.5 percent and 20

percent of street segments account for one quarter and one half of the crimes, respectively. At 10,000 crimes —

or 10 crimes per street segment, approximately 15 percent of segments account for one quarter of the crimes

and approximately 37 percent of segments account for one half of the crimes. At 1,000,000 crimes — 1,000

per street segment — uniformity is roughly met. As the number of crimes approaches infinity, uniformity will

be achieved asymptotically. However, for relatively uncommon crimes or common crimes that are measured

over a reasonably short window (e.g., one or two years), the asymptotic result will not hold and, as such,

an un-adjusted measure of crime concentration will overstate the extent to which crimes are concentrated.
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Next, we turn to Panel B which considers the performance of the popular metric which removes crime-free

segments. At very low crime densities, this metric performs admirably. Conditioning on non-zero crime

street segments leads to near-uniformity at 50 crimes for 1,000 street segments — here, 24.4 percent of

the street segments account for one quarter of the crimes and 49 percent of the street segments account

for 50 percent of the crimes. Likewise, this metric performs well asymptotically — though, of course, so

does the un-adjusted metric. However, the metric performs far less well in the middle of the crime density

distribution where we have between 1 and 100 crimes per street segment. For instance, at 1,000 crimes or 1

crime per street segment, we see that 12 percent of the segments account for one quarter of the crimes and

34 percent of the segments account for one half of the crimes. These figures are between one third and one

half smaller than uniformity and the result is that crime concentration will be overestimated by between

one third and one half. Likewise, at 10,000 crimes or 10 crimes per street segment, we see that 16 percent of

segments account for one quarter of the crimes and approximately 39 percent of segments account for one

half of the crimes. Incredibly, at these intermediate densities, removing crime-free street segments performs

only marginally better than the un-adjusted metric. Since this window (between 1 and 10 crimes per street

segment) is an extremely common density among the data that has been studied in the extant literature,

the scope for the removal of crime-free segments to overstate crime density is unfortunately quite high.12

The thought experiment presented in Figure 1 makes clear that uniformity is an asymptotic result and

does not hold in most empirical applications. We further see that removing the zero crime street segments

does not substantively correct this issue at most crime densities. We thus propose a “corrected” metric

of crime concentration that allows us to quantify the marginal degree of crime concentration above and

beyond that which would be expected as an artifact of the density of the crime data:

mcckijt=cc
k
ijt−cck∗ijt (1)

In (1), mcckijt represents the marginal crime concentration in city i for crime type j over time period,

t, and crime share k, where, for our purposes, k = either 25 or 50 percent. cck∗ijt is the crime concentration

that is actually experienced in city i (i.e., the measure proposed by Weisburd) for crime type j and

cckijt is the crime concentration obtained under randomization with replacement. Since each randomized

12In our data which spans between 10 and 15 years in three of the largest cities in the United States, the number of overall
crimes per street segment varies between 35 and 115. Individual crime types are far less dense and vary between 0.5 and 10.
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iteration of our randomization procedure will lead to a slightly different result, cckijt will, in practice, be the

mean crime concentration across a large number of trials. We later use variation across trials to generate

statistical inferences about crime concentration.

The larger is the value of mcckijt, the greater the degree of true crime concentration. Consider, for

instance, a crime type for which cc25ijt = 10 percent and cc25∗ijt = 4 percent. What this means is that, under

the randomization of crimes to street segments, we would expect 10 percent of street segments to account

for one quarter of the crimes. In reality, only 4 percent of street segments accounted for one quarter of

the crimes. Hence, mcc25ijt = 10 percent - 4 percent = 6 percent. Accordingly, the additional share of street

segments needed to account for one quarter of the crimes under randomization is 6 percent. Another way

to express this is that crime is 2.5 times more concentrated than under randomization. Critically, unlike

the standard crime concentration metric, higher marginal crime concentration indicates that crime is more

concentrated. In Section 5, we estimate mcc25ijt and mcc
50
ijt for a variety of different crime types for each

of our three cities: New York City, Chicago and Philadelphia.

4 Data

We derive estimates of the degree of marginal crime concentration using public crime microdata from three

of the five largest cities in the United States: New York City (January 1st 2006 - December 31st, 2018),

Chicago (January 1st, 2001 - May 4th, 2019) and Philadelphia (January 1st, 2006 - May 11th, 2019).13, 14 We

focus on a relatively long time period in order to better capture the spatial dynamics of crime. We note that,

by focusing on a shorter time window — e.g., one year — the problem of non-uniformity will be even larger.

The data correspond to all crimes known to the city’s municipal law enforcement agency. Each data

set contains the coordinates where each crime occurred, allowing us to determine the street on which

the crime happened.15 The data also provide details on the type of offense, which we use to examine five

categories on crime in addition to total crimes: murder, robbery, assault (simple and aggravated), motor

13The crime datasets were downloaded from each city’s Open Data website.
Chicago: https://data.cityofchicago.org/Transportation/Street-Center-Lines/6imu-meau. New York
City: https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i/data,
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-Year-To-Date-/5uac-w243/data. Philadelphia:
https://www.opendataphilly.org/dataset/crime-incidents.

14We focus on these three cities because crimes from a fourth large city — Los Angeles — are coded primarily to
intersections rather than street segments. Likewise, the city of Houston does not provide a shapefile of the city’s street
segments, excluding that city from the analysis.

15Fewer than 1 percent of crimes in each city have missing coordinates. As these crimes could not be matched to a street,
they were removed from the data.
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vehicle theft, and larceny/theft. In keeping with prior literature, we assign crimes to street segments by

determining which street is closest to the crime’s coordinates through the mapping software ArcMap 10.6.1

(Ratcliffe, 2012; Lee et al., 2017).16,17 Following Weisburd (2015), we drop any crime that occurs in an

intersection (i.e. matches with two or more street segments) or does not match to any street segments.

We determine if a crime is near multiple streets by drawing 50-foot buffer around each street segment

in the city and seeing how many streets are within 50-feet of each crime. There are substantial differences

in the number of crimes geocoded to a single street segment rather than an intersection between each

city. For both New York City (71 percent) and Chicago (94 percent), the majority of crime incidents are

located within 50 feet of only one street segment, significantly larger than Philadelphia’s 41 percent due

to Philadelphia crimes being more commonly geocoded to a street intersection.

Out of concern that some street segments — such as highways — may not have any crimes coded to

them or that extremely long street segments may have more crimes simply due to their length, we exclude

any street that is 500 meters (1,640 feet) or longer. This excludes approximately 0.7 percent of streets

in New York City, 0.3 percent of streets in Chicago, and 1.1 percent of streets in Philadelphia.18 Because

there is some uncertainty about whether some of the remaining street segments are, due to features of

the physical environment, essentially “crime proof,” we also engage in an auxiliary analysis in which we

randomly remove 5 percent of crime-free street segments in the data are re-compute our measure of crime

concentration. Results are substantively very similar.

We continue our discussion of the data by presenting descriptive statistics on crime in our three cities.

Table 1 presents, for each of our cities, the number of street segments as well as the number of crimes

in the complete data set and in 2018, the last full year of data available. The cities included in this study

vary widely with respect to the number of street segments in the city, though they are in rough accordance

with the city’s population. Philadelphia has slightly over 40,000 street segments, Chicago has about

16The street segment shapefiles were downloaded from each city’s Open Data website. While some prior lit-
erature edits the shapefiles they used, we did not edit these files and used them exactly as downloaded from
each city’s website. Chicago: https://data.cityofchicago.org/Transportation/Street-Center-Lines/6imu-meau. New
York City: https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b. Philadelphia:
https://www.opendataphilly.org/dataset/street-centerlines.

17Prior to merging each city’s coordinates with the street segment shapefile, the crime data was projected to the proper
coordinate reference system (CRS) based on the CRS of the given shapefile. To check the accuracy of both the coordinates
and the merging process, a small number of coordinates were manually checked to ensure that they were located on the
street they were merged to and that the address corresponded with the coordinates provided.

18Results are not sensitive to using a less conservative choice.
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56,000, and New York City has nearly 120,000. Chicago contains the largest number of crimes in our data,

approximately 6.4 million, a function of the high crime rate in the city, the near complete matching of crime

to a single street segment, and the fact that the available data extends as far back as 2001. Philadelphia

and New York City have fewer crimes with 1 million and 4.6 million total crimes, respectively. While the

total number of crimes differ between cities, the makeup of each city’s crime is similar. Larceny in the most

common crime in each city, consisting of between 21% (Chicago) and 27% (New York City) of crimes. In

each city, murder is rare relative to other crimes, comprising just 0.1% of crimes reported in the city. These

trends are roughly similar when examining crime that occurred in 2018, the last full year of data available.

Next, we consider crime concentration in each of our three cities, replicating the canonical figure fromWeis-

burd (2015) which presents cc25∗ij and cc50∗ij for each of five large cities: Cincinnati OH, New York, NY, Sacra-

mento, CA, Seattle, WA and Tel Aviv-Yafo (Israel). These data are presented in Figure 2, Panel A (crime

concentration = 25 percent) and B (crime concentration = 50 percent). The gray bars represent the original

cities in Weisburd’s convenience sample. The black bars represent the three large cities for which we have

data. Note that NYC is in both samples — the estimates differ slightly insofar as the sample years are slightly

different. In Weisburd’s convenience sample, in general, between 1-2 percent of street segments account for 25

percent of the crimes and between 4 and 6 percent of the street segments account for 50 percent of the crime,

depending on the city. In our very large cities, crime is a little bit less concentrated but not dramatically so.

Crime is most concentrated in NYC which is relatively safe — 1.2 percent of street segments account for

one quarter of the crimes and 4.6 percent of street segments account for one half of the crimes. Crimes are

less concentrated in Chicago and Philadelphia which have higher levels of crime. In Chicago 2.8 percent of

segments account for one quarter of the crimes and 9.3 percent of the segments account for one half of the

crimes. In Philadelphia, those numbers are 2.2 percent and 8.6 percent respectively. Hence, the empirical

regularity documented in Weisburd (2015) appears to roughly hold in our sample of cities too. In the next

section, we characterize the extent to which crimes are concentrated, relative to what we argue is the ideal

counterfactual — that which is generated using randomization with replacement rather than uniformity.

5 Results

5.1 Main Results

Our main results are presented in Table 2A and Table 2B which correspond with the share of street

segments that account for one quarter and one half of crimes, respectively. The tables have a parallel
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structure and report key crime concentration metrics for each five crime types (murder, robbery, assault,

motor vehicle theft and larceny) and aggregate crime in each of our three cities. Each table has five

columns. The first column reports the proportion of street segments, when ranked in descending order

of crime incidence, that account for k percent of each type of crime. This is the standard (un-adjusted)

measure of crime concentration referenced by Weisburd (2015). The second column reports the same

quantity, conditioning on non-zero crime segments as is presented in the majority of the recent literature.

The third column reports the same quantity in simulated data in which crimes are randomized to street

segments, with replacement. The final two columns use the information in columns (1)-(3) to compute

marginal crime concentration. Column (4) reports the measure of marginal concentration that we lay

out in Section 3, equation (1). Column (5) reports the measure of crime concentration that is implied

by the approach of removing crime-free street segments suggested by Levin et al. (2017).

We begin discussion of our findings by comparing the standard (un-adjusted) measure of crime con-

centration with crime concentration under randomization in each of our three cities. Consistent with

computations presented in Weisburd (2015), in NYC, just over 1 percent of street segments account for one

quarter of the crimes and just under 5 percent of street segments account for half of the crimes. In Chicago

and Philadelphia, the figures are slightly higher but still imply a very large degree of crime concentration.

For murder, the rarest crime in the data, the shares are especially small — across our three cities, between

0.3 and 1.1 of street segments account for one quarter of the murders and between 1-3 percent of the

street segments account for half of the murders.

Next, we consider the simulated data in which crimes are randomly allocated to street segments. Here,

we see that, for overall crimes, one quarter of the crimes would accrue to the top 19-22 percent of street

segments and one half of the crimes would accrue to the top 42-46 percent of street segments. Given that

we are using between 13 and 19 years of data in three of the largest cities in the United States, the data

are sufficiently dense such that the distortionary impact of using the un-adjusted crime concentration

metric to study total crime is fairly modest. For a smaller city or using a shorter time window, using

the un-adjusted metric would result in far greater bias. However, for individual crime types, even when

we use nearly two decades of data, the bias is large. For murder, in the simulated data, we observe that

just 1-2 percent of street segments would account for one quarter of the murders under randomization.

As such, the large degree of apparent crime concentration in the un-adjusted crime concentration metric
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is an artifact of the low density of homicides. The story is similar for auto thefts (25 percent of crimes

accrue to 6.7 percent of street segments) and robberies (25 percent of crimes accrue to 8.1 percent of street

segments) as well as for assaults and larcenies, albeit to a lesser degree. In each case, randomizing crimes

to street segments artificially produces a pattern in the data that is consistent with crime concentration.

Next, we consider the method of removing crime-free street segments which has been suggested by

Levin et al. (2017) and which has become a mainstay of the empirical literature. Conditioning on segments

which experienced at least one crime, one quarter of crimes accrued to the top 2.2-3.4 percent of street

segments and one half of the crimes accrued to the top 8.5-12 percent of street segments, depending on the

city. Next, consider murder. Depending on the city, among street segments which experienced at least one

murder, between 10-13 percent account for one quarter of murders implying that murder is concentrated to

a considerable degree. However, we know that the empirical and simulated share of street segments which

account for one quarter of crimes are nearly identical. As such, this simple comparison suggests that the

method of removing crime-free segments does little to correct for the bias caused by low-density crime data.

What does this imply for our measure of marginal crime concentration and for the metric advanced by

Levin et al. (2017) that excludes crime-free segments? Recall that, in Section 2.3, we claimed that the method

of removing zero crime segments would yield a measure of crime concentration that is biased upward, a

prediction that is supported by the simulations summarized in Figure 1. Here, we present empirical evidence

for this claim using data from our three cities. Turning to columns (4) and (5) of Tables 2A and 2B, we

compare our proposed metric — marginal crime concentration — to an equivalent metric which is implied

by the method of removing crime-free street segments. Our metric (MCC) is reported in column (4) and

is obtained by subtracting column (1) from column (3). The implied marginal crime concentration metric

of Levin et al. (2017) is presented in column (5). Given that the metric implicitly assumes a counterfactual

of uniformity (k percent of street segments account for k percent of crimes), marginal crime concentration

can be computed by subtracting column (2) from either 25 percent (Table 2A) or 50 percent (Table 2B).

Using MCC, we see little evidence of crime concentration for murder and modest levels of crime

concentration for robbery and auto theft. However, the method of Levin et al. (2017) implies considerable

concentration for each of these crimes. For murder, the implied measure of crime concentration (between

11.6-15.1 depending on the city) is approximately 20 times larger than the measure of crime concentration

which uses randomization to identify the counterfactual expectation (between 0.5-1.7 depending on the city).
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A similar story holds for auto theft where, for NYC, 7.6 percent of street segments which experienced auto

theft account for one quarter of the auto thefts. These numbers imply that auto thefts are concentrated to a

substantial degree. The marginal crime concentration metric implied by Levin et al. (2017) is 17.4. However,

once we correctly account for the simulated distribution of crimes under randomization, we fail to see evidence

of appreciable concentration — in NYC, auto thefts are concentrated by only four percentage points more

than what would occur via randomization. Put differently, the method of crime-free street segments overstates

the degree of crime concentration by between 80 and 300 percent, depending on the city. The method of Levin

et al. (2017) likewise overstates the degree to which robberies are concentrated approximately 200 percent.

Turning to assault and larceny, we see considerable evidence of crime concentration albeit less than

has been measured in the prior literature. The measures are quite similar by city, especially for overall

crime, thus providing support for the idea that crime concentration may well be highly stable across cities.

Overall, the method of removing crime-free segments yields as estimate of marginal crime concentration

that is 50 percent too large for larceny and 67 percent too large for assaults. Given that there is some

uncertainty about the presence of “crime proof” street segments in the data, in an auxiliary analysis

presented in Appendix Table 1A and Appendix Table 1B, we have removed 5 percent of the

crime-free street segments at random and re-computed our measure of marginal crime concentration.

Results are extraordinarily similar to those reported in Tables 2A and 2B.

5.2 The Cumulative Density of Marginal Crime Concentration

A core virtue of Weisburd’s approach to measuring crime concentration its simplicity and transparency.

However, beyond the measurement issues which have been previously noted, an important limitation of

focusing solely on the share of street segments which account for one quarter and one half of crimes is that

such an approach is uninformative about the full distribution of crime concentration across the entire model

space (Steenbeek and Weisburd, 2016). This limitation has given rise to a recent and growing literature

which uses the Lorenz curve as a means of documenting the degree to which crimes are concentrated

(Bernasco and Steenbeek, 2017; OBrien, 2019; Mohler et al., 2019). By plotting the cumulative density

function of crimes against a line of perfect equality, the Lorenz curve allows researchers to generate a more

complete understanding of the extent to which crimes are concentrated at each point along the distribution.

At the same time, the key disadvantage of the Lorenz curve approach is that the associated Gini coefficient —

which is the measure of crime concentration under the Lorenz curve — is extraordinarily difficult to interpret.
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Recognizing that each of the two approaches brings something different to the table, in this section

we present a graphical representation of marginal crime concentration by plotting the empirical and the

simulated cumulative density function of crime together in the same figure. We present this graphical

representation in Figure 3A (New York City), Figure 3B (Chicago) and Figure 3C (Philadelphia). In

each figure, we plot the share of street segments (y-axis) that account for a given share of crimes (x-axis).

The solid curve plots the empirical data. For an x-axis value of 100, the curve provides the share of crimes

which account for all of the crimes of a given type in a given city. Consistent with Tables 2A and 2B,

approximately 1-2 percent of street segments account for one quarter of the crimes and 5 percent of street

segments account for half of the crimes. For rare crime categories like murder, the numbers are smaller.

The dashed curve plots the null distribution given by share of street segments which account for a given

share of crimes under randomization with replacement. We also provide a 45 degree line which represents

perfect uniformity in which k percent of street segments account for k percent of crimes for all values of k.

The 45 degree line represents the implicit counterfactual under the method of removing crime-free street

segments. The larger the vertical distance between the dashed simulated curve and the 45 degree line,

the larger is the bias due to low density data. For a given value of k, marginal crime concentration is

represented by the vertical distance between the dashed simulated curve and the solid empirical curve.

Consistent with Tables 2A and 2B, for total crimes, there is a considerable degree of crime concentration

which holds across the entire model space. For murder, crime concentration is extremely minimal with

the solid and dashed lines lying almost directly on top of one another. For robbery and auto theft, crime

concentration is likewise small, especially at the top of the distribution which, critically, is the range over

which resources can potentially be deployed in a resource-constrained world.

In Appendix Figure 1A, Appendix Figure 1B and Appendix Figure 1C, we present the

analog for the method of computing crime concentration by removing crime-free street segments which

is a mainstay of the literature. Here, for a given value of k, the vertical distance between the 45 degree line

and empirical crime concentration represents marginal crime concentration. Comparing Appendix Figures

2A-2C to Figures 3A-3C, it is easy to see that the method of removing crime-free segments appreciably

overstates the degree to which there is crime concentration. This is particularly true for murder, robbery

and auto theft. It is also notable that the degree to which the method of removing crime-free street

segments leads to upwards bias in measured crime concentration is greatest at the top of the distribution

15



which is precisely where this metric is most useful.

5.3 Statistical Inference

5.3.1 Bootstrapped Confidence Interval

In computing crime concentration, a natural question to address is whether crime is significantly con-

centrated. That is, can we be confident that the empirical data are sufficiently different from the null

distribution obtained via randomization? We compute bootstrapped 99 percent confidence intervals

generated by re-randomizing crimes to street segments in 1,000 trials. An advantage of the bootstrap

is that it does not require us to make any parametric assumptions about the distribution of the data.

For a given share of street segments, the boundaries of the confidence interval are formed by the 0.5th and

99.5th percentile of the bootstrapped distribution. For a given value of k, to the extent that the empirical

share of street segments which account for k percent of crimes lies outside the confidence interval, we

can conclude that crime concentration is statistically significant.

In Table 3, we report the upper and lower limits of the 99 percent confidence interval along with the

empirical share of street segments that account for 25 percent and 50 percent of crimes. For illustrative

purposes, following Weisburd (2015), we focus on the share of street segments which account for 25 percent

and 50 percent. However the substantive findings in Table 3 hold for each integer value of k for all crime

types. Two important lessons can be derived from the table. First, the confidence intervals are very narrow.

Since we are using nearly two decades of data from three of the largest cities in the United States, the data

are dense. Accordingly, there is very little variation in the spatial distribution of crimes that is achieved

via random assignment. As such, we have extraordinary power in the data to test the null hypothesis

of zero crime concentration. Second, for each crime type in each of our three cities, crime is significantly

concentrated. Even murder — which is concentrated to only a very small degree substantively — is

distributed significantly differently in practice than the null distribution implies.

5.3.2 Pearson’s χ2 Goodness-of-Fit Test

An alternative way to determine whether crimes are significantly concentrated is to directly compare the

observed distribution of crimes in a city to the theoretical distribution arising from the random assignment

of crimes to a city’s street segments. The advantage of such an approach is that it can be used without

needing to explicitly compute crime concentration. We do so using a version of Pearson’s χ2 goodness-of-fit
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test which evaluates whether the distribution of the observed data differs significantly from a theoretical

distribution (D’Agostino, 1986). In this case, the theoretical distribution of interest is a multinomial

distribution which perfectly describes the problem given that we can think of each of our k street segments

as a category and each of the n crimes as a trial, a scenario that is analogous to tossing a k-sided die n times.

To generate a random allocation of crimes, we simulate data from random variables X=(X1,...,Xk),

where k is the number of possible mutually exclusive street segments with corresponding probabilities

of a crime landing in a street segment, p1,...,pk. There are n independent trials which represent the total

number of crimes. In this case, pi=1/k since we assign equal probability of a crime occurring in any street

segment. Since the k outcomes are mutually exclusive, then pi≥0 for i=1,...,k and
∑n

i=1pi=1. Thus,

we have that X∼Multinom(n,p1,...,pk).

The Pearson test statistic,χ2, is given by:

χ2=
n∑

i=1

(Oi−Ei)
2

Ei

, (2)

where Oi is number of observed crimes per street segment i where i=1,...,k, Ei is the number of expected

(or theoretical) crimes per street segment i, and n is the total number of crimes. Given that the traditional

χ2 test fails when there are many cells with small values, we simulate data from a multinomial distribution

under the null hypothesis (that the observed distribution is multinomial), calculate the Pearson test

statistic, and then repeat 1,000 times until we obtain the distribution of the test statistic. We then calculate

the proportion of times that the test statistic from simulation is larger than the observed test statistic. This

process yields an approximate p -value. Using this test, we find that in each of our three cities, there are

statistically significant differences between the observed distribution of crimes and the random multinomial

distribution (p< 0.001). As such, crime is significantly concentrated. We present results of this test for

total crimes in Appendix Figure 2. However, consistent with our bootstrap inference test, this result

also holds for each crime type that we study.

6 Conclusion

In this paper, we build upon recent methodological advances in the measurement of crime concentration

and propose a method of measuring crime concentration that is simple, easy to interpret and is robust to

a key statistical artifact — caused by sparse crime data — that the recent literature has been working to
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address. A common solution to this problem is to measure crime concentration among street segments that

actually experience crime. This approach has become a mainstay of the recent literature (Ajzenman and

Jaitman, 2016; Steenbeek and Weisburd, 2016; Gill et al., 2017; Andresen et al., 2017; Hibdon et al., 2017;

Levin et al., 2017; Schnell et al., 2017; Favarin, 2018; Vandeviver and Steenbeek, 2019; Umar et al., 2020)

and is often reported alongside a Gini coefficient. We note that while this approach will correct some of

the upward bias in the measurement of crime concentration, appreciable bias will remain in most empirical

applications. This is especially true at the top of the distribution of street segments. Therefore, the prior

approach is most problematic for resource allocation problems where the constraints are the most binding.

Our proposed solution — comparing the actual distribution of crimes to a distribution of crimes under

the randomization with replacement — allows us to generate a corrected measure of crime concentration

that is robust to problems posed by sparse crime data. Our approach complements recent advances which

render Gini coefficient-based metrics robust to the same problem (Steenbeek and Weisburd, 2016; Bernasco

and Steenbeek, 2017; OBrien, 2019; Mohler et al., 2019). However, a virtue of our approach is that it

preserves the simplicity and interpretability of Weisburd’s original crime concentration metric. While an

advantage of the Gini coefficient relative to Weisburd’s metric is that it allows researchers to characterize

crime concentration without appealing to arbitrary cutoffs (e.g., 25 or 50 percent of crimes), our method

easily lends itself to a full representation of the data. We present a graphical representation of marginal

crime concentration that offers a more interpretable analog to the Gini coefficient. We also offer two formal

statistical tests for the significance of crime concentration using our metric.

Our proposed metric — marginal crime concentration — is simply the excess share of crimes that occur

in the top k percent of locations relative to the null distribution. Using this metric, it is easy to compare

observed crime concentration to random chance in an intuitive way — for instance, we might say that

crime is 2-3 times more concentrated than it would be by chance. In this way, it is similar to positive

predictive value (i.e., “precision”), a mainstay of prediction research in the social and computational

sciences (James et al., 2013). Just as comparing the positive predictive value for a high-risk group to

baseline risk in a population, we can compare crime concentration in actual versus simulated data in order

to generate a metric that is simple and intuitive to understand.19

19We further note that this methodology also has broad applicability to other domains in criminological research — for
example to cohort studies of young people which invariably show that a small share of the population is responsible for an outsize
share of the crimes and to “early warning systems” that police departments use to identify potentially problematic police officers
and which are based on the premise that a small share of police officers are responsible for a disproportionate share of misconduct.
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Like our predecessors, we find considerable evidence that crimes are concentrated among the cities

we study and, accordingly, we provide additional support for the law of crime concentration. While the

data suggests that each type of crime is significantly concentrated in a statistical sense, the extent to

which the law of crime concentration applies requires qualification. In this research, we note that in three

of the largest cities in the United States, while crime is highly concentrated in the aggregate, murders

are effectively unconcentrated and the robberies and auto thefts are only concentrated to a very small

degree. On the other hand, assaults and larcenies exhibit fairly substantial concentration at the city level.

These results are qualitatively different than many of those in the literature and suggest that crime is

less concentrated than has been suggested in the recent literature.

While marginal crime concentration solves a key problem that remains in the extant literature and while

it is simpler and more easily interpreted than a Gini coefficient, several attendant limitations remain. First,

like other measures of crime concentration, marginal crime concentration requires an assumption about the

number of street segments in a city that are eligible to receive crimes. That is, some street segments that do

not receive crimes over a given period may not simply be “lucky.” It is possible that due to a natural feature

of the built environment that some street segments are effectively “crime proof.” To the extent that some

street segments are immune to crime, our crime concentration metric has the potential to be biased. While

we show empirically that the metric is effectively unchanged when we designate 5 percent of street segments

to be ineligible to receive crimes, in applications involving a small number of street segments our metric may

be more sensitive to such an assumption. As such, we recommend that researchers consider pre-processing

their data in such applications. Second, while marginal crime concentration, like other approaches to crime

concentration, allows an analyst to characterize the extent to which crime is concentrated in a given city

over a given period of time, the policy implications that follow from a measure of crime concentration

remain unclear. That is, the extent to which resources should be redeployed on the basis of spatial crime

data depends not only on the extent to which crimes are concentrated among hot spots but also on the

degree to which crimes are ex ante predictable and the extent to which crime is sensitive to the resources

in question. While crime concentration remains a key estimand in allocating resources, it is best used

alongside other information as well as domain-specific knowledge and common sense.
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Table 1: Summary Statistics

New York City Chicago Philadelphia

Time period Jan 2006 - Dec 2018 Jan 2001 - May, 2019 Jan 2006 - May, 2019
Number of Street Segments 118,653 56,179 40,542
Percentage of Crime at Intersections 29.0% 5.6% 59%

Crime During Entire Studied Period

All crimes 4,575,752 6,411,983 1,028,977
Murder 4,200 9,386 1,743
Robbery 131,179 237,369 28,669
Assault 683,463 1,591,870 219,45
Auto theft 81,903 296,415 20,451
Larceny 1,222,251 1,320,332 225,267

Crime During 2018

All crimes 333,863 251,329 69,532
Murder 243 568 131
Robbery 8,394 9,158 1,665
Assault 55,566 67,320 16,247
Auto theft 3,925 9,556 1,034
Larceny 100,307 60,012 17,320

Note: Table presents descriptive
data on the number of street segments and crimes in each of our three cities: New York City, Chicago and Philadelphia.
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Table 2A: Marginal Crime Concentration at 25 Percent of Street Segments

Marginal Crime Concentration

Share of Segments, Share of Segments, Share of Segments, Our proposed method Levin-Rosenfeld-Deckard
Unadjusted (Weisburd) Non-Zero Crime Segments Simulated

A. New York City

All crimes 1.2 2.2 20.4 19.1 22.8
Murder .3 12.2 .8 .5 12.8
Robbery 1.1 4.3 8.1 7 20.7
Assault 1 2.5 14.8 13.8 22.5
Auto theft 2.2 7.6 6.7 4.5 17.4
Larceny .4 .9 16.8 16.4 24.1

B. Chicago

All crimes 2.8 3.4 22.2 19.4 21.6
Murder 1.1 9.9 2.9 1.7 15.1
Robbery 2.1 3.7 13.5 11.4 21.3
Assault 2.2 3.1 19.7 17.4 21.9
Auto theft 4.1 6.3 14.4 10.3 18.7
Larceny 1.3 1.7 19.2 17.9 23.3

C. Philadelphia

All crimes 2.2 3.1 19.4 17.2 21.9
Murder .5 13.4 1 .5 11.6
Robbery 1.1 4.1 6.8 5.6 21
Assault 2.1 4 14.6 12.5 21
Auto theft 2.1 8 5.5 3.4 17
Larceny .6 1 14.7 14.1 24

Note: This table reports the share of street segments that account for 25
and 50 percent of each of six crime types: total crime, murder, robbery, assault, auto theft and larceny and three cities: NYC
(Panel A), Chicago (Panel B) and Philadelphia (Panel C). Column (1) reports crime concentration for all street segments,
Column (2) reports crime concentration for street segments with non-zero crime and Column (3) reports simulated crime
concentration arising generated by randomizing crimes to street segments, with replacement. The final two columns report
marginal crime concentration using both our proposed method and by the method proposed by Levin-Rosenfeld-Deckard.
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Table 2B: Marginal Crime Concentration at 50 Percent of Street Segments

Marginal Crime Concentration

Share of Segments, Share of Segments, Share of Segments, Our proposed method Levin-Rosenfeld-Deckard
Unadjusted (Weisburd) Non-Zero Crime Segments Simulated

A. New York City

All crimes 4.6 8.5 43.6 39 41.5
Murder 1 36.3 1.7 .7 13.7
Robbery 3.7 14.4 21 17.3 35.6
Assault 3.5 8.8 34.3 30.8 41.3
Auto theft 6.5 22.6 15.4 8.8 27.4
Larceny 2.9 5.9 38 35.1 44

B. Chicago

All crimes 9.3 11.3 46.3 37 38.7
Murder 3.2 28.1 7 3.8 21.9
Robbery 7.4 13 32.3 24.9 37
Assault 7.2 10 42.6 35.4 40
Auto theft 11.8 18.2 33.9 22 31.8
Larceny 7.1 9.6 41.9 34.8 40.5

C. Philadelphia

All crimes 8.6 11.9 42.2 33.6 38.1
Murder 1.5 40.9 2.1 .6 9.1
Robbery 4.6 16.6 15.6 11 33.4
Assault 7 13.3 34 27 36.7
Auto theft 6.3 23.8 14.4 8.1 26.2
Larceny 5.5 9.3 34.1 28.5 40.8

Note: This table reports the share of street segments that account
for 25 and 50 percent of each of six crime types: total crime, murder, robbery, assault, auto theft and larceny and three
cities: NYC (Panel A), Chicago (Panel B) and Philadelphia (Panel C). Column (1) reports crime concentration for all street
segments, Column (2) reports crime concentration for street segments with non-zero crime and Column (3) reports simulated
crime concentration arising generated by randomizing crimes to street segments, with replacement. The final two columns
report marginal crime concentration using both our proposed method and the method proposed by Levin-Rosenfeld-Deckard.
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Table 3: Statistical Inference

99% Confidence Interval

Share of Crimes Empirical Share Lower Limit Upper Limit
of Street Segments

A. New York City
Total crime 25 .012 .2032 .2038

50 .0464 .4359 .4367

Murder 25 .0034 .008 .0084
50 .0101 .0169 .0173

Robbery 25 .0111 .0807 .0816
50 .0365 .2085 .2108

Assault 25 .0097 .1473 .1486
50 .0347 .3421 .3437

Auto theft 25 .0221 .066 .0673
50 .0653 .1522 .1554

Theft 25 .0043 .1677 .1686
50 .0292 .3798 .3811

B. Chicago
Total crime 25 .0277 .2216 .2221

50 .0933 .4625 .4631

Murder 25 .0112 .0275 .0298
50 .0319 .0692 .0715

Robbery 25 .0209 .1341 .1358
50 .074 .3213 .3241

Assault 25 .0224 .1963 .1972
50 .0722 .4256 .4268

Auto theft 25 .0411 .1438 .1452
50 .1182 .3373 .3399

Theft 25 .0126 .1916 .1926
50 .0706 .4183 .4197

C. Philadelphia
Total crime 25 .0223 .1935 .1945

50 .0855 .4213 .4229

Murder 25 .0049 .0094 .0102
50 .0148 .0202 .021

Robbery 25 .0112 .066 .0687
50 .046 .1544 .1576

Assault 25 .0208 .1448 .1466
50 .0703 .3384 .3414

Auto theft 25 .021 .0537 .0556
50 .0626 .1409 .1468

Theft 25 .0063 .1461 .1477
50 .0553 .3394 .3422

Note: For each crime type, in each city, this table reports the share of street segments that account for 25
percent and 50 percent of the crimes as well as the lower and upper limits of the 99 percent bootstrapped confidence interval
calculated through a re-randomization routine in which crimes are randomly assigned to street segments, with replacement.
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Figure 1: Crime Concentration, Simulated Data for n = 1,000 street segments

Panel A: Unadjusted crime concentration, all street segments
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Panel B: Unadjusted crime concentration, non-zero crime street segments
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Note: Figures plot the share of street segments that account for 25 percent (Panel A) and 50 percent (Panel B) of crimes, in simu-
lated data in which crimes are randomly assigned to street segments, with replacement. The number of street segments is fixed at
1,000 while the number of crimes is allowed to very along the x-axis. The x-axis has been transformed using a logarithmic scale.
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Figure 2: Share of Crimes Among the Top 25 and 50 Percent of Street Segments, by City

Panel A: Unadjusted crime concentration, all street segments
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Panel B: Unadjusted crime concentration, non-zero crime street segments
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Note: Figures plot the share of
street segments that account for 25 percent (Panel A) and 50 percent (Panel B) of crimes. The gray bars are replicated from
Table 3 in Weisburd (2015). The black bars correspond to data from New York City, Chicago and Philadelphia (our sample).
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Figure 3A: Cumulative Density of Crime Concentration (New York City)
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Note: Figures plot the share of street segments (y-axis) that account for a given percentage of crimes (x-axis). The solid curve
represents the empirical data, the dashed curve represents simulated data in which crimes are randomized to street segments,
with replacement. The gray dotted line is a 45 degree line. For a given value of k, crimes are concentrated when the heights of
the solid and dashed curves are different. Marginal crime concentration is the vertical distance between the dashed and the
solid curves. 30



Figure 3B: Cumulative Density of Crime Concentration (Chicago)
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Note: Figures plot the share of street segments (y-axis) that account for a given percentage of crimes (x-axis). The solid curve
represents the empirical data, the dashed curve represents simulated data in which crimes are randomized to street segments,
with replacement. The gray dotted line is a 45 degree line. For a given value of k, crimes are concentrated when the heights of
the solid and dashed curves are different. Marginal crime concentration is the vertical distance between the dashed and the
solid curves. 31



Figure 3C: Cumulative Density of Crime Concentration (Philadelphia)
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Note: Figures plot the share of street segments (y-axis) that account for a given percentage of crimes (x-axis). The solid curve
represents the empirical data, the dashed curve represents simulated data in which crimes are randomized to street segments,
with replacement. The gray dotted line is a 45 degree line. For a given value of k, crimes are concentrated when the heights of
the solid and dashed curves are different. Marginal crime concentration is the vertical distance between the dashed and the
solid curves. 32
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Appendix Table 1A:
Marginal Crime Concentration at 25 Percent of Street Segments, Removing 5 Percent of Street Segments

Marginal Crime Concentration

Share of Segments, Share of Segments, Share of Segments, Our proposed method Levin-Rosenfeld-Deckard
Unadjusted (Weisburd) Non-Zero Crime Segments Simulated

A. New York City

All crimes 1.2 2.2 20.5 19.3 22.8
Murder .3 12.3 .9 .5 12.8
Robbery 1.1 4.4 8.4 7.3 20.6
Assault 1 2.5 14.9 14 22.5
Auto theft 2.2 7.7 6.8 4.6 17.3
Larceny .4 .9 17 16.6 24.1

B. Chicago

All crimes 2.8 3.4 22.3 19.5 21.6
Murder 1.1 9.9 2.9 1.8 15.1
Robbery 2.1 3.7 13.8 11.7 21.3
Assault 2.2 3.1 19.8 17.5 21.9
Auto theft 4.1 6.3 14.7 10.6 18.7
Larceny 1.3 1.7 19.4 18.1 23.3

C. Philadelphia

All crimes 2.2 3.1 19.5 17.3 21.9
Murder .5 13.4 1 .5 11.6
Robbery 1.1 4.1 6.9 5.8 21
Assault 2.1 4 14.8 12.7 21
Auto theft 2.1 8 5.7 3.6 17
Larceny .6 1 14.8 14.2 24

Note: This table reports the share of street segments that account for 25
and 50 percent of each of six crime types: total crime, murder, robbery, assault, auto theft and larceny and three cities: NYC
(Panel A), Chicago (Panel B) and Philadelphia (Panel C). Column (1) reports crime concentration for all street segments,
Column (2) reports crime concentration for street segments with non-zero crime and Column (3) reports simulated crime
concentration arising generated by randomizing crimes to street segments, with replacement. The final two columns report
marginal crime concentration using both our proposed method and by the method proposed by Levin-Rosenfeld-Deckard.

34



Appendix Table 1B:
Marginal Crime Concentration at 50 Percent of Street Segments, Removing 5 Percent of Street Segments

Marginal Crime Concentration

Share of Segments, Share of Segments, Share of Segments, Our proposed method Levin-Rosenfeld-Deckard
Unadjusted (Weisburd) Non-Zero Crime Segments Simulated

A. New York City

All crimes 4.7 8.5 43.8 39.1 41.5
Murder 1 36.4 1.8 .8 13.6
Robbery 3.7 14.4 21.5 17.9 35.6
Assault 3.5 8.8 34.8 31.3 41.3
Auto theft 6.5 22.7 15.9 9.4 27.3
Larceny 2.9 5.9 38.3 35.3 44

B. Chicago

All crimes 9.3 11.3 46.4 37 38.7
Murder 3.2 28.1 7.3 4.1 21.9
Robbery 7.4 13 32.5 25.1 37
Assault 7.2 10 42.8 35.6 40
Auto theft 11.8 18.2 34.1 22.3 31.8
Larceny 7.1 9.6 42.1 35 40.5

C. Philadelphia

All crimes 8.6 11.9 42.4 33.8 38.1
Murder 1.5 40.9 2.2 .7 9.1
Robbery 4.6 16.6 16.2 11.6 33.4
Assault 7 13.3 34.2 27.1 36.7
Auto theft 6.3 23.8 14.6 8.4 26.2
Larceny 5.5 9.3 34.5 28.9 40.8

Note: This table reports the share of street segments that account
for 25 and 50 percent of each of six crime types: total crime, murder, robbery, assault, auto theft and larceny and three
cities: NYC (Panel A), Chicago (Panel B) and Philadelphia (Panel C). Column (1) reports crime concentration for all street
segments, Column (2) reports crime concentration for street segments with non-zero crime and Column (3) reports simulated
crime concentration arising generated by randomizing crimes to street segments, with replacement. The final two columns
report marginal crime concentration using both our proposed method and the method proposed by Levin-Rosenfeld-Deckard.
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Appendix Figure 1A: Cumulative Density of Crime Concentration,
Removing Crime-Free Street Segments (New York City)
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Note: Figures plot the share of street segments (y-axis) that account for a given percentage of crimes (x-axis). The solid red
curve represents the empirical data, after removing crime-free street segments. The dotted line is a 45 degree line. Under the
approach of Levin et al. (2017), for a given value of k, crimes are concentrated when the heights of the two curves are
different. 36



Appendix Figure 1B: Cumulative Density of Crime Concentration,
Removing Crime-Free Street Segments (Chicago)
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Note: Figures plot the share of street segments (y-axis) that account for a given percentage of crimes (x-axis). The solid red
curve represents the empirical data, after removing crime-free street segments. The dotted line is a 45 degree line. Under the
approach of Levin et al. (2017), for a given value of k, crimes are concentrated when the heights of the two curves are
different. 37



Appendix Figure 1C: Cumulative Density of Crime Concentration,
Removing Crime-Free Street Segments (Philadelphia)
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Note: Figures plot the share of street segments (y-axis) that account for a given percentage of crimes (x-axis). The solid red
curve represents the empirical data, after removing crime-free street segments. The dotted line is a 45 degree line. Under the
approach of Levin et al. (2017), for a given value of k, crimes are concentrated when the heights of the two curves are
different. 38



Appendix Figure 2: Pearson’s χ2 Test: Observed versus Simulated Spatial Crime Distributions
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Observed data in Chicago 
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Observed data in Philadelphia 
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Note: Figures plot the simulated (according to a multinomial distribution) and observed distributions of total crime for each
of our three cities — NYC, Chicago and Philadelphia. We also plot the Pearson χ2 test statistic from the simulated and
observed data. In all cases, the observed statistic lies far from the distribution of simulated Pearson statistics, and thus the
observed data distribution is significantly different from the simulated data distribution.
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